Курс высшей математики ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Лекция 29

Ссылки

§ 35. Определенный интеграл как предел интегральной суммы
 § 36. Геометрический и физический смысл определенного интеграла
 § 37. Формула Ньютона-Лейбница
 § 38. Основные свойства определенного интеграла

 

 Глава VIII. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

§35. определенный интеграл как предел интегральной суммы

Пусть функция у=ƒ(х) определена на отрезке [а; b], а < b. Выполним следующие действия.

1. С помощью точек х0=а, x1, х2, ..., хn = В (х0 <x1 < ...< хn) разобьем отрезок [а, b] на n частичных отрезков [х01], [x1; х2],..., [хn-1n] (см. рис. 167).

2. В каждом частичном отрезке [xi-1;xi], i = 1,2,...,n выберем произвольную точку сi є [xi-1; xi] и вычислим значение функции в ней, т. е. величину ƒ(сi).

3. Умножим найденное значение функции ƒ (сi) на длину ∆xi=xi-xi-1 соответствующего частичного отрезка: ƒ (сi) • ∆хi.

4. Составим сумму Sn всех таких произведений:

Сумма вида (35.1) называется интегральной суммой функции у = ƒ(х) на отрезке [а; b]. Обозначим через λ длину наибольшего частичного отрезка: λ = max ∆xi(i = 1,2,..., n).

5. Найдем предел интегральной суммы (35.1), когда n ® ∞ так, что λ®0.

Если при этом интегральная сумма Sn имеет предел I, который не зависит ни от способа разбиения отрезка [а; b] на частичные отрезки, ни от выбора точек в них, то число I называется определенным интегралом от функции у = ƒ(х) на отрезке [а; b] и обозначается Таким образом,

Числа а и b называются соответственна нижним и верхним пределами интегрирования, ƒ(х) — подынтегральной функцией, ƒ(х) dx — подынтегральным выражением, х — переменной интегрирования, отрезок [а; b] — областью (отрезком) интегрирования.

Функция у=ƒ(х), для которой на отрезке [а; b] существует определенный интегралназывается интегрируемой на этом отрезке.

Сформулируем теперь теорему существования определенного интеграла.

Теорема 35.1 (Коши). Если функция у = ƒ(х) непрерывна на отрезке [а; b], то определенный интеграл

Отметим, что непрерывность функции является достаточным условием ее интегрируемости. Однако определенный интеграл может существовать и для некоторых разрывных функций, в частности для всякой ограниченной на отрезке функции, имеющей на нем конечное число точек разрыва.

Укажем некоторые свойства определенного интеграла, непосредственно вытекающие из его определения (35.2).

1. Определенный интеграл не зависим от обозначения переменной интегрирования:

Это следует из того, что интегральная сумма (35.1), а следовательно, и ее предел (35.2) не зависят от того, какой буквой обозначается аргумент данной функции.

2. Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

3. Для любого действительного числа с.

§36. ГЕОМЕТРИЧЕСКИЙ И ФИЗИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

Площадь криволинейной трапеции

Пусть на отрезке [а; b] задана непрерывная функция у = ƒ(х) ≥ 0. Фигура, ограниченная сверху графиком функции у = ƒ(х), снизу — осью Ох, сбоку — прямыми х = а и х = b, называется криволинейной трапецией. Найдем площадь этой трапеции.

Для этого отрезок [а; b] точками а=х0, х1, ..., b=хn0<x1<...<xn) paзобьем на n частичных отрезков [хо1], [х12],...,[хn-1n]. (см. рис. 168). В каждом частичном отрезке [xi-1;xi] (i=1,2,..., n) возьмем произвольную точку ci и вычислим значение функции в ней, т. е. ƒ(ci).

Умножим значением функции ƒ(ci) на  длину ∆xi=xi-xi-1 соответствующего частичного отрезка. Произведение ƒ(ci) • ∆xi равно площади прямоугольника с основанием ∆xi и высотой ƒ(ci). Сумма всех таких произведений

равна площади ступенчатой фигуры и приближенно равна площади S криволинейной трапеции:

С уменьшением всех величин Δхi точность приближения криволинейной трапеции ступенчатой фигурой и точность полученной формулы увеличиваются. Поэтому за точное значение площади S криволинейной трапеции принимается предел S, к которому стремится площадь ступенчатой фигуры Sn, когда n неограниченно возрастает так, что λ = max∆xi ®0:

Итак, определенный интеграл от неотрицательной функции численно равен площади криволинейной трапеции.

В этом состоит геометрический смысл определенного интеграла.

Работа переменной силы

Пусть материальная точка М перемещается под действием силы F, направленной вдоль оси Ох и имеющей переменную величину F = F(x), где х — абсцисса движущейся точки М.

Найдем работу А силы F по перемещению точки М вдоль оси Ох из точки х = а в точку х = b (а < b). Для этого отрезок [а; b] точками а = х0, х1, ..., b = хn0 < x1 < ... < хn) разобьем на n частичных отрезков [х0; x1], [x1; x2],..., [xn-1; xn]. Сила, действующая на отрезке [xi-1; xi], меняется от точки к точке. Но если длина отрезка Δхi = хi-xi-1 достаточно мала, то сила F на этом отрезке изменяется незначительно. Ее можно приближенно считать постоянной и равной значению функции F = F(x) в произвольно выбранной точке х = ci Î [xi-1; xi]. Поэтому работа, совершенная этой силой на отрезке [xi-1;xi], равна произведению F(ci)•Δхi (Как работа постоянной силы F(ci) на участке [xi-1; xi].)

Приближенное значение работы А силы F на всем отрезке [а; b] есть

Это приближенное равенство тем точнее, чем меньше длина Δхi Поэтому за точное значение работы А принимается предел суммы (36.1) при условии, что наибольшая длина λ частичных отрезков стремится к нулю:

Итак, работа переменной силы F , величина которой есть непрерывная функция F = F(x), действующей на отрезке [а; b], равна определенному интегралу от величины F(x) силы, взятому по отрезку [а; b].

В этом состоит физический смысл определенного интеграла.

Аналогично можно показать, что путь S, пройденный точкой за промежуток времени от t=а до t=b, равен определенному интегралу от скорости v(t):

масса m неоднородного стержня на отрезке [a,b] равна определенному интегралу от плотности g(х):

 

§ 37. ФОРМУЛА НЬЮТОНА-ЛЕЙБНИЦА

Пусть функция у = ƒ(х) интегрируема на отрезке [а; b].

Теорема 37.1. Если функция у = ƒ(х) непрерывна на отрезке [а; b] и F(x) — какая-либо ее первообразная на [а; b] (F'(x) = ƒ(х)), то имеет место формула

Разобьем отрезок [а;b] точками а = x0, x1,..., b = xn (x0 < x1 < ...< хn) на n частичных отрезков [x0;x1], [x1;x2],..., [xn-1;xn], как это показано на рис. 169.

Рассмотрим тождество

Преобразуем каждую разность в скобках по формуле Лагранжа

ƒ(b)-ƒ(а) = ƒ'(с)*(b-а).

Получим

т. е.

где ci есть некоторая точка интервала (xi-1; xi). Так как функция у = ƒ(х) непрерывна на [а; b], то она интегрируема на [а; b]. Поэтому существует предел интегральной суммы, равный определенному интегралу от ƒ (х) на [а ;b].

Переходя в равенстве (37.2) к пределу при λ = max ∆xi®0, получаем

т. е.

Равенство (37.1) называется формулой Ньютона-Лейбница. Если ввести обозначение F(b)- F(a) = F(x)|ab , то формулу Ньютона-Лейбница (37.1) можно переписать так:

Формула Ньютона-Лейбница дает удобный способ вычисления определенного интеграла. Чтобы вычислить определенный интеграл от непрерывной функции ƒ (х) на отрезке [а; b], надо найти ее первообразную функцию F(x) и взять разность F(b)- F(a) значений этой первообразной на концах отрезка [a;b].

Например,
 а

 

Пример 37.1. Вычислить интеграл

Решение:

Пример 37.2. Вычислить интеграл

Решение:

 

§38. ОСНОВНЫЕ СВОЙСТВА ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

Рассмотрим основные свойства определенного интеграла, считая подынтегральную функцию интегрируемой на отрезке [a;b]. При выводе свойств будем использовать определение интеграла и формулу Ньютона-Лейбница.

1. Если с — постоянное число и функция ƒ(х) интегрируема на [a;b], то

т. е. постоянный множитель с можно выносить за знак определенного интеграла.

Составим интегральную сумму для функции с • ƒ(х). Имеем:

Тогда Отсюда вытекает, что функцияс • ƒ(х) интегрируема на [а; b] и справедлива формула (38.1).

2. Если функции ƒ1(х) и ƒ2(х) интегрируемы на [а;b], тогда интегрируема на [а; b] их сумма u

т. е. интеграл от суммы равен сумме интегралов.

Свойство 2 распространяется на сумму любого конечного числа слагаемых.

3.

Это свойство можно принять по определению. Это свойство также подтверждается формулой Ньютона-Лейбница.

4. Если функция ƒ(х) интегрируема на [а; b] и а < с < b, то

т. е. интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности).

При разбиении отрезка [а;b] на части включим точку с в число точек деления (это можно сделать ввиду независимости предела интегральной суммы от способа разбиения отрезка [а; b] на части). Если с = хm, то интегральную сумму можно разбить на две суммы:

Каждая из написанных сумм является интегральной соответственно для отрезков [а; b], [а; с] и [с; b]. Переходя к пределу в последнем равенстве при n ® (λ ® 0), получим равенство (38.3).

Свойство 4 справедливо при любом расположении точек а, b, с (считаем, что функция ƒ (х) интегрируема на большем из получающихся отрезков).

Так, например, если а < b < с, то

Отсюда

(использованы свойства 4 и 3).

5. «Теорема о среднем». Если функция ƒ(х) непрерывна на отрезке [а; b], то существует тонка с є [а; b] такая, что

По формуле Ньютона-Лейбница имеем

где F'(x) = ƒ(х). Применяя к разности F(b)-F(a) теорему Лагранжа (теорему о конечном приращении функции), получим

F(b)-F(a) = F'(c)•(b-а) = ƒ(с)•(b-а).

Свойство 5 («теорема о среднем») при ƒ (х) ≥ 0 имеет простой геометрический смысл: значение определенного интеграла равно, при некотором с є (а; b), площади прямоугольника с высотой ƒ (с) и основанием b- а  (см. рис. 170). Число

называется средним значением функции ƒ(х) на отрезке [а; b].


6. Если функция ƒ (х) сохраняет знак на отрезке [а; b], где а < b, то интегралимеет тот же знак, что и функция. Так, если ƒ(х)≥0 на отрезке [а; b], то

По «теореме о среднем» (свойство 5)

где с є [а; b]. А так как ƒ(х) ≥ 0 для всех х Î [а; b], то и

ƒ(с)≥0, b-а>0.

Поэтому ƒ(с)•(b-а) ≥ 0, т. е.

7. Неравенство между непрерывными функциями на отрезке [а; b], (a<b) можно интегрировать. Так, если ƒ1(x)≤ƒ2(х) при х є [а;b], то

Так как ƒ2(х)-ƒ1(x)≥0, то при а < b, согласно свойству 6, имеем

Или, согласно свойству 2,

Отметим,что дифференцировать неравенства нельзя.

8. Оценка интеграла. Если m и М — соответственно наименьшее и наибольшее значения функции у = ƒ (х) на отрезке [а; b], (а < b), то

Так как для любого х є [а;b] имеем m≤ƒ(х)≤М, то, согласно свойству 7, имеем

Применяяк крайним интегралам свойство 5, получаем

Если ƒ(х)≥0, то свойство 8 иллюстрирует ся геометрически: площадь криволинейной трапеции заключена между площадями прямоугольников, основание которых есть [a;b], а высоты равны m и М (см. рис. 171).
 

9. Модуль определенного интеграла не превосходит интеграла от модуля подынтегральной функции:

Применяя свойство 7 к очевидным неравенствам -|ƒ(х)|≤ƒ(х)≤|ƒ(х)|, получаем

Отсюда следует, что

10. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, в которой переменная интегрирования заменена этим пределом, т. е.

По формуле Ньютона-Лейбница имеем:

Следовательно,

Это означает, что определенный интеграл с переменным верхним пределом есть одна из первообразных подынтегральной функции.

 

См. также

Оглавление | Лекция 28 | Лекция 30 | Лекция 31

Hosted by uCoz