Курс высшей математики Производные и дифференциалы функции нескольких переменных

Лекция 35

Ссылки

44.3. Дифференцируемость и полный дифференциал функции
44.4. Применение полного дифференциала к приближенным вычислениям
44.5. Дифференциалы высших порядков
44.6. Производная сложной функции. Полная производная
44.7. Инвариантность формы полного дифференциала
44.8. Дифференцирование неявной функции

 

44.3. Дифференцируемость и полный дифференциал функции

Пусть функция z =ƒ (х; у) определена в некоторой окрестности точки М(х;у). Составим полное приращение функции в точке М:

Функция z = ƒ (х; у) называется дифференцируемой в точке М(х; у), если ее полное приращение в этой точке можно представить в виде

где а = а(Δх, Δу)®0 и β=β(Δх,Δу)®0 при Δх®0, Δу®0. Сумма первых двух слагаемых в равенстве (44.1) представляет собой главную часть приращения функции.

Главная часть приращение функции z=ƒ(х;у), линейная относительно Δх и Δу, называется полным дифференциалом этой функции и обозначается символом dz:

dz=A*Δx+B*Δy.     (44.2)

Выражения А•Δх и В•Δу называют частными дифференциалами. Для независимых переменных х и у полагают Δх=dx и Δу=dy. Поэтому равенство (44.2) можно переписать в виде

dz=Adx+Bdy.     (44.3)

 

Теорема 44.2 (необходимое условие дифференцируемости функции). Если функция z = ƒ(х;у) дифференцируема в точке М(х;у), то она непрерывна в этой точке, имеет в ней частные производные dz/dx и dz/dy, причем dz/dx = А, dz/dy = В.

Так как функция дифференцируема в точке М, то имеет место равенство (44.1). Отсюда вытекает, что Это означает, что функция непрерывна в точке М. Положив Δу = 0, Δх ≠ 0 в равенстве (44.1), получим: Δz = А • Δх + а • Δх. Отсюда находимПереходя

к пределу при Δх ® 0, получим

Таким образом, в точке М существует частная производная ƒ'x(х;у) = А. Аналогично доказывается, что в точке М существует частная производная

Равенство (44.1) можно записать в виде

где g=аΔх+βΔу®0 при Δх ® 0, Δу ® 0.

Отметим, что обратное утверждение не верно, т. е. из непрерывности функции или существования частных производных не следует дифференцируемость функции. Так, непрерывная функцияне дифференцируема в точке (0;0).

Как следствие теоремы получаем формулу для вычисления полного дифференциала. Формула (44.3) принимает вид:

или

где— частные дифференциалы функции z=ƒ(х;у).

Теорема 44.3 (достаточное условие дифференцируемости функции). Если функция z = ƒ(х;у) имеет непрерывные частные производные z'x и z'y в точке М(х;у), то она дифференцируема в этой точке и ее полный дифференциал выражается формулой (44.5).

Примем теорему без доказательства.

Отметим, что для функции у=ƒ(х) одной переменной существование производной ƒ'(х) в точке является необходимым и достаточным условием ее дифференцируемости в этой точке.

Чтобы функция z=ƒ(х;у) была дифференцируема в точке, необходимо, чтобы она имела в ней частные производные, и достаточно, чтобы она имела в точке непрерывные частные производные.

Арифметические свойства и правила исчисления дифференциалов функции одной переменной сохраняются и для дифференциалов функции двух (и большего числа) переменных.

44.4. Применение полного дифференциала к приближенным вычислениям

Из определения дифференциала функции z=ƒ (х; у) следует, что при достаточно малых |Δх| и |Δу| имеет место приближенное равенство

Так как полное приращение Δz=ƒ(х+Δх;у+Δу)-ƒ(х;у), равенство (44.6) можно переписать в следующем виде:

Формулой (44.7) пользуются в приближенных расчетах.

 

Пример 44.3. Вычислить приближенно 1,023,01.

Решение: Рассмотрим функцию z = ху. Тогда 1,023,01 = (х + Δх)у+∆у, где х = 1, Δх = 0,02, у = 3, Δу = 0,01. Воспользуемся формулой (44.7), предварительно найдя Следовательно,

Для сравнения: используя микрокалькулятор, находим: 1,023,01 ≈ 1,061418168.

Отметим, что с помощью полного дифференциала можно найти: границы абсолютной и относительной погрешностей в приближенных вычислениях; приближенное значение полного приращения функции и т. д.

 

44.5. Дифференциалы высших порядков

Введем понятие дифференциала высшего порядка. Полный дифференциал функции (формула (44.5)) называют также дифференциалом первого порядка.

Пусть функция z=ƒ(х;у) имеет непрерывные частные производные второго порядка. Дифференциал второго порядка определяется по формуле (d2z = d(dz). Найдем его:

Отсюда:Символически это записывается так:

Аналогично можно получить формулу для дифференциала третьего порядка:

где

Методом математической индукции можно показать, что

Отметим, что полученные формулы справедливы лишь в случае, когда переменные х и у функции z = ƒ(х;у) являются независимыми.

 

Пример 44.4. (Для самостоятельного решения.) Найти d2z, если z=х3у2.

Ответ: d2z=бху2dx2+12х2уdxdy+2х3dy2.

 

44.6. Производная сложной функции. Полная производная

Пусть z=ƒ(х;у) — функция двух переменных х и у, каждая из которых является функцией независимой переменной t: х = x(t), у = y(t). В этом случае функция z = f(x(t);y(t)) является сложной функцией одной независимой переменной t; переменные х и у — промежуточные переменные.

Теорема 44.4. Если z = ƒ(х;у) — дифференцируемая в точке М(х;у) є D функция и х = x(t) и у = y(t) — дифференцируемые функции независимой переменной t, то производная сложной функции z(t) = f(x(t);y(t)) вычисляется по формуле

 

Дадим независимой переменной t приращение Δt. Тогда функции х = = x(t) и у = y{t) получат приращения Δх и Δу соответственно. Они, в свою очередь, вызовут приращение Az функции z.

Так как по условию функция z — ƒ(х;у) дифференцируема в точке М(х; у), то ее полное приращение можно представить в виде

где а®0, β®0 при Δх®0, Δу®0 (см. п. 44.3). Разделим выражение Δz на Δt и перейдем к пределу при Δt®0. Тогда Δх®0 и Δу®0 в силу непрерывности функций х = x(t) и у = y(t) (по условию теоремы — они дифференцируемые). Получаем:

т. е.

или

Частный случай: z=ƒ(х;у), где у=у(х), т. е. z=ƒ(х;у(х)) — сложная функция одной независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной t играет х. Согласно формуле (44.8) имеем:

Формула (44.9) носит название формулы полной производной.

Общий случай: z=ƒ(х;у), где x=x(u;v), у=у(u;v). Тогда z= f(x(u;v);y(u;v)) — сложная функция независимых переменных u и v. Ее частные производныеможно найти, используя формулу (44.8) следующим образом. Зафиксировав v, заменяем в нейсоответствующими частными производными

Аналогично получаем:

Таким образом, производная сложной функции (z) по каждой независимой переменной (u и v) равна сумме произведений частных производных этой функции (z) по ее промежуточным переменным (х и у) на их производные по соответствующей независимой переменной (u и v).

 

Пример 44.5. Найтиесли z=ln(x22), х=u•v, у=u/v.

Решение: Найдем dz/du (dz/dv — самостоятельно), используя формулу (44.10):

Упростим правую часть полученного равенства:

т. е.

 

44.7. Инвариантность формы полного дифференциала

Используя правило дифференцирования сложной функции, можно показать, что полный дифференциал обладает свойством инвариантности: полный дифференциал функции z=ƒ(х;у) сохраняет один и тот же вид независимо от того, являются ли аргументы независимыми переменными или функциями независимых переменных.

Пусть z=ƒ(х;у), где х и у — независимые переменные. Тогда полный дифференциал (1-го порядка) функции имеет вид

(формула (44.5)).

Рассмотрим сложную функцию z=ƒ(х;у), где х = x(u;v), у = y(u;v), т. е. функцию z = f(x(u;v);y(u;v)) = F(u;v;), где u и v — независимые переменные. Тогда имеем:

Выражения в скобках представляют собой полные дифференциалы dx и dy функций х = х(u;v) и y = y(u;v). Следовательно, и в этом случае,

44.8. Дифференцирование неявной функции

Функция z = ƒ (х; у) называется неявной, если она задается уравнением

неразрешенным относительно z. Найдем частные производные неявной функции z, заданной уравнением (44.11). Для этого, подставив в уравнение вместо z функцию ƒ (х; у), получим тождество F(x;у;ƒ (х; у)) = 0. Частные производные по х и по у функции, тождественно равной нулю, также равны нулю:

откуда

Замечания.

а) Уравнение вида (44.11) не всегда определяет одну переменную как неявную функцию двух других. Так, уравнение х22+z2-4=0 определяет функцииопределенные в круге х22≤4,определенную в полукруге х2+у2 ≤ 4 при у≥ 0 и т. д., а уравнение cos(x + 2у +3z)- 4 = 0 не определяет никакой функции.

Имеет место теорема существования неявной функции двух переменных: если функция F(x; у; z) и ее производные F'x(x; у; z), F'y(x; у; z), F'z(x;y;z) определены и непрерывны в некоторой окрестности точки M0(x0;y0;z0), причем F(x0;y0;z0)=0, а F'z(x0;y0;z0)≠0, то существует окрестность точки М0, в которой уравнение (44.11) определяет единственную функцию z=ƒ(х;у), непрерывную и дифференцируемую в окрестности точки (х00) и такую, что ƒ(х00)=z0.

б) Неявная функция у=ƒ(х) одной переменной задается уравнением F(x;у)=0. Можно показать, что в случае, если удовлетворены условия существования неявной функции одной переменной (имеется теорема, аналогичная вышеуказанной), то производная неявной функции находится по формуле

Пример 44.6. Найти частные производные функции z, заданной уравнением ez+z-х2у+1=0.

Решение: Здесь F(x;y;z)=ez+z-х2у+1, F'x=-2ху, F'y = -х2, F'z=ez+1. По формулам (44.12) имеем:

Пример 44.7. Найти если неявная функция у=ƒ(х) задана уравнением у3+2у=2х.

Решение: Здесь F(x;у) = у3+2у-2х, F'x=-2, F'y = 3у2+2. Следовательно,

См. также

Оглавление | Лекция 34 | Лекция 36

Hosted by uCoz