44.3. Дифференцируемость и полный
дифференциал функции
44.4. Применение полного дифференциала к приближенным
вычислениям
44.5. Дифференциалы высших порядков
44.6. Производная сложной функции. Полная производная
44.7. Инвариантность формы полного
дифференциала
44.8. Дифференцирование неявной функции
44.3. Дифференцируемость и полный дифференциал функции
Пусть функция z =ƒ (х; у) определена в некоторой окрестности точки М(х;у). Составим полное приращение функции в точке М:
Функция z = ƒ (х; у) называется дифференцируемой в точке М(х; у), если ее полное приращение в этой точке можно представить в виде
где а = а(Δх, Δу)®0 и β=β(Δх,Δу)®0 при Δх®0, Δу®0. Сумма первых двух слагаемых в равенстве (44.1) представляет собой главную часть приращения функции.
Главная часть приращение функции z=ƒ(х;у), линейная относительно Δх и Δу, называется полным дифференциалом этой функции и обозначается символом dz:
dz=A*Δx+B*Δy. (44.2)
Выражения А•Δх и В•Δу называют частными дифференциалами. Для независимых переменных х и у полагают Δх=dx и Δу=dy. Поэтому равенство (44.2) можно переписать в виде
dz=Adx+Bdy. (44.3)
Так как функция дифференцируема в точке М, то имеет место равенство
(44.1). Отсюда вытекает, что
Это означает, что функция непрерывна в точке М. Положив Δу = 0, Δх ≠ 0 в
равенстве (44.1), получим: Δz = А • Δх + а • Δх. Отсюда находим
Переходя
к пределу при Δх ® 0, получим
Таким образом, в точке М существует частная производная ƒ'x(х;у) = А. Аналогично доказывается, что в точке М существует частная производная
Равенство (44.1) можно записать в виде
где g=аΔх+βΔу®0 при Δх ® 0, Δу ® 0.
Отметим, что обратное утверждение не верно, т. е. из непрерывности функции
или существования частных производных не следует дифференцируемость функции.
Так, непрерывная функцияне
дифференцируема в точке (0;0).
Как следствие теоремы получаем формулу для вычисления полного дифференциала. Формула (44.3) принимает вид:
или
где— частные
дифференциалы функции z=ƒ(х;у).
Примем теорему без доказательства.
Отметим, что для функции у=ƒ(х) одной переменной существование производной ƒ'(х) в точке является необходимым и достаточным условием ее дифференцируемости в этой точке.
Чтобы функция z=ƒ(х;у) была дифференцируема в точке, необходимо, чтобы она имела в ней частные производные, и достаточно, чтобы она имела в точке непрерывные частные производные.
Арифметические свойства и правила исчисления дифференциалов функции одной переменной сохраняются и для дифференциалов функции двух (и большего числа) переменных.
44.4. Применение полного дифференциала к приближенным вычислениям
Из определения дифференциала функции z=ƒ (х; у) следует, что при достаточно малых |Δх| и |Δу| имеет место приближенное равенство
Так как полное приращение Δz=ƒ(х+Δх;у+Δу)-ƒ(х;у), равенство (44.6) можно переписать в следующем виде:
Формулой (44.7) пользуются в приближенных расчетах.
Пример 44.3. Вычислить приближенно 1,023,01.
Решение: Рассмотрим функцию z = ху. Тогда 1,023,01 =
(х + Δх)у+∆у, где х = 1, Δх = 0,02, у = 3, Δу = 0,01. Воспользуемся формулой
(44.7), предварительно найдя
Следовательно,
Для сравнения: используя микрокалькулятор, находим: 1,023,01 ≈ 1,061418168.
Отметим, что с помощью полного дифференциала можно найти: границы абсолютной и относительной погрешностей в приближенных вычислениях; приближенное значение полного приращения функции и т. д.
44.5. Дифференциалы высших порядков
Введем понятие дифференциала высшего порядка. Полный дифференциал функции (формула (44.5)) называют также дифференциалом первого порядка.
Пусть функция z=ƒ(х;у) имеет непрерывные частные производные второго порядка. Дифференциал второго порядка определяется по формуле (d2z = d(dz). Найдем его:
Отсюда:Символически
это записывается так:
Аналогично можно получить формулу для дифференциала третьего порядка:
где
Методом математической индукции можно показать, что
Отметим, что полученные формулы справедливы лишь в случае, когда переменные х и у функции z = ƒ(х;у) являются независимыми.
Пример 44.4. (Для самостоятельного решения.) Найти d2z, если z=х3у2.
Ответ: d2z=бху2dx2+12х2уdxdy+2х3dy2.
44.6. Производная сложной функции. Полная производная
Пусть z=ƒ(х;у) — функция двух переменных х и у, каждая из которых является функцией независимой переменной t: х = x(t), у = y(t). В этом случае функция z = f(x(t);y(t)) является сложной функцией одной независимой переменной t; переменные х и у — промежуточные переменные.
Дадим независимой переменной t приращение Δt. Тогда функции х = = x(t) и у = y{t) получат приращения Δх и Δу соответственно. Они, в свою очередь, вызовут приращение Az функции z.
Так как по условию функция z — ƒ(х;у) дифференцируема в точке М(х; у), то ее полное приращение можно представить в виде
где а®0, β®0 при Δх®0, Δу®0 (см. п. 44.3). Разделим выражение Δz на Δt и перейдем к пределу при Δt®0. Тогда Δх®0 и Δу®0 в силу непрерывности функций х = x(t) и у = y(t) (по условию теоремы — они дифференцируемые). Получаем:
т. е.
или
Частный случай: z=ƒ(х;у), где у=у(х), т. е. z=ƒ(х;у(х)) — сложная функция одной независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной t играет х. Согласно формуле (44.8) имеем:
Формула (44.9) носит название формулы полной производной.
Общий случай: z=ƒ(х;у), где x=x(u;v), у=у(u;v). Тогда z= f(x(u;v);y(u;v))
— сложная функция независимых переменных u и v. Ее частные производныеможно
найти, используя формулу (44.8) следующим образом. Зафиксировав v, заменяем
в ней
соответствующими
частными производными
Аналогично получаем:
Таким образом, производная сложной функции (z) по каждой независимой переменной (u и v) равна сумме произведений частных производных этой функции (z) по ее промежуточным переменным (х и у) на их производные по соответствующей независимой переменной (u и v).
Пример 44.5. Найтиесли
z=ln(x2+у2), х=u•v, у=u/v.
Решение: Найдем dz/du (dz/dv — самостоятельно), используя формулу (44.10):
Упростим правую часть полученного равенства:
т. е.
44.7. Инвариантность формы полного дифференциала
Используя правило дифференцирования сложной функции, можно показать, что полный дифференциал обладает свойством инвариантности: полный дифференциал функции z=ƒ(х;у) сохраняет один и тот же вид независимо от того, являются ли аргументы независимыми переменными или функциями независимых переменных.
Пусть z=ƒ(х;у), где х и у — независимые переменные. Тогда полный дифференциал (1-го порядка) функции имеет вид
(формула (44.5)).
Рассмотрим сложную функцию z=ƒ(х;у), где х = x(u;v), у = y(u;v), т. е. функцию z = f(x(u;v);y(u;v)) = F(u;v;), где u и v — независимые переменные. Тогда имеем:
Выражения в скобках представляют собой полные дифференциалы dx и dy функций х = х(u;v) и y = y(u;v). Следовательно, и в этом случае,
44.8. Дифференцирование неявной функции
Функция z = ƒ (х; у) называется неявной, если она задается уравнением
неразрешенным относительно z. Найдем частные производные
неявной функции z,
заданной уравнением (44.11). Для этого, подставив в уравнение вместо z
функцию ƒ (х; у), получим тождество F(x;у;ƒ (х; у)) = 0. Частные производные
по х и по у функции, тождественно равной нулю, также равны нулю:
откуда
Замечания.
а) Уравнение вида (44.11) не всегда определяет одну переменную как неявную
функцию двух других. Так, уравнение х2+у2+z2-4=0
определяет функцииопределенные
в круге х2+у2≤4,
определенную
в полукруге х2+у2 ≤ 4 при у≥ 0 и т. д., а уравнение cos(x + 2у +3z)- 4 = 0
не определяет никакой функции.
Имеет место теорема существования неявной функции двух переменных: если функция F(x; у; z) и ее производные F'x(x; у; z), F'y(x; у; z), F'z(x;y;z) определены и непрерывны в некоторой окрестности точки M0(x0;y0;z0), причем F(x0;y0;z0)=0, а F'z(x0;y0;z0)≠0, то существует окрестность точки М0, в которой уравнение (44.11) определяет единственную функцию z=ƒ(х;у), непрерывную и дифференцируемую в окрестности точки (х0;у0) и такую, что ƒ(х0;у0)=z0.
б) Неявная функция у=ƒ(х) одной переменной задается уравнением F(x;у)=0. Можно показать, что в случае, если удовлетворены условия существования неявной функции одной переменной (имеется теорема, аналогичная вышеуказанной), то производная неявной функции находится по формуле
Пример 44.6. Найти частные производные функции z, заданной уравнением ez+z-х2у+1=0.
Решение: Здесь F(x;y;z)=ez+z-х2у+1, F'x=-2ху, F'y = -х2, F'z=ez+1. По формулам (44.12) имеем:
Пример 44.7. Найти
если неявная
функция у=ƒ(х) задана уравнением у3+2у=2х.
Решение: Здесь F(x;у) = у3+2у-2х, F'x=-2, F'y = 3у2+2. Следовательно,